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Abstract

The Transformer architecture has seen a lot of attention in re-
cent years also thanks to its ability to scale well and allow
massive parallelism during training. This has made possible
the development of Language Models (LMs) of increasing
size and the discovery of latent abilities that completely out-
class traditional methods e.g. rule-based systems. However,
they also introduced new issues, like their inability to retain
the history of previous interactions due to their stateless na-
ture or the difficulty in controlling their generation. Differ-
ent attempts have been made to address these issues, e.g. a
‘brute force’ approach to solving the memory issue is to in-
clude the full conversation history in the context window, a
solution that is limited by the quadratic scalability of Trans-
formers. In this work, we explore computationally practical
solutions to the memory problem. We propose to augment
the decoder-only architecture of (most) Large LMs with a
(relatively small) memory encoder. Its output is prepended
to the decoder’s input in a similar fashion to recent works
in Adapters and the original Transformer architecture. Initial
experiments show promising results, however future work is
needed to compare with State-of-the-Art methods.

Introduction

Large Language Models (LLMs) have gained a lot of trac-
tion lately thanks to their content flexibility and human-
like fluency. However, they also present many shortcomings,
from the difficulty of controlling content output, to their -
possibly harmful- hallucinations to their high computational
costs both for training and inference.

LLMs are based on the Transformer architecture pro-
posed by Vaswani et al. (2017) which originally comprised
an encoder and a decoder and was aimed at seq-to-seq
tasks. However, most language models that show ‘interest-
ing’ emergent abilities such as in-context learning (Brown
et al. 2020), instruction following (Ouyang et al. 2022), etc.
follow a decoder-only architecture.

In this work, we tackle one of the problems given by the
stateless nature of LLMs, that is their inability to keep a his-
tory of previous conversations. Keeping a memory of pre-
vious conversations is a common ability in humans and its
expectation is also projected in LLMs. Further, memory can
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also provide a way for existing models to acquire and use
new knowledge that e.g. was not available in the training
data due to its specificity or a temporal difference.

The ever-growing size of the context window for
Transformer-based models, see 32k tokens for GPT-4!, of-
fers a ‘brute force’ solution to the problem whereby any rel-
evant memory/knowledge is included in the context window.
However, given the quadratic scalability of the Transformer
architecture (Vaswani et al. 2017) the need for a different
solution is obvious.

Other approaches to this problem include: the use of dif-
ferentiable £-NNs to augment a generic Transformer archi-
tecture (Fan et al. 2021), extension of the Transformer archi-
tecture to allow the inclusion of memory (Martins, Marinho,
and Martins 2022), and implementation of memory as added
tokens to the input/output (Bulatov, Kuratov, and Burtsev
2022).

Methods

Our approach consists of building on top of pretrained
decoder-only models such as LLaMA (Touvron et al. 2023)
and augmenting them with an encoder. This encoder will
only take as input the memory (e.g. conversation history,
new knowledge, etc.) and will output its encoded version.
The decoder (plain LLaMA), will receive the regular input
(e.g. a user query) and the output of the encoder (the mem-
ory).

We acknowledge that separately trained encoders may not
be able to reach the same performance as models designed to
have an encoder since the beginning of the training (Zhong,
Lei, and Chen 2022), however we think this method (and our
approach) represents a good trade-off between good perfor-
mance and the computational costs of pretraining a model
from scratch.

Our approach is also similar in concept to works that use
Adapters to fine-tune language models (Zhang et al. 2023)
with the difference that our encoder (replacing the adapter)
receives a different input compared to the decoder. While
the decoder’s goal is still to answer the original query, the
encoder receives the memory and encodes it to influence the
decoder’s output.
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Architecture

We start our experiments with an encoder obtained by mir-
roring LLaMA’s decoder architecture. From the original
Transformer architecture (Vaswani et al. 2017), a decoder
block and encoder block differ for (i) the cross-attention that
is only present in the decoder and (ii) the masked attention
in the decoder that is not masked in the encoder. Given that
decoder-only architectures do not contain cross-attention,
we obtain our encoder by only removing the masking from
the attention of the decoder block.

Compared to the LLaMA decoder, in the encoder, we
scale down the dimension of each block and the total number
of blocks. This is done to reduce the training computational
and data needs. Given both the reduced dimension and the
absence of cross-attention, we inject the encoded memory
by prepending it to the decoder’s input. We experiment with
a different number of layers (blocks), settling for eight as
a trade-off between performance and computational needs.
We also scale down the dimension from 4096 to 128. We
provide our code in our GitHub repository?>.

Training

When training, we freeze the weights of the decoder and
only train the encoder based on the output of the whole
model (backpropagating from the output of the decoder). We
pretrain the encoder using a linearly increasing learning rate
(1e-5 to le-4) for two epochs with a reconstruction objec-
tive, feeding the decoder an empty string and computing the
cross-entropy loss of the memory input and the decoder’s
output. This is followed by three epochs of fine-tuning where
we feed the decoder the regular input and prepend the en-
coder’s output at every layer, we then compute the cross-
entropy loss with the target. For the learning rate, we used a
cosine decay from le-4.

Datasets

For both training and pretraining we use four different
datasets: Curiosity (Rodriguez et al. 2020) is a collection
of conversations on a specific topic with separate knowl-
edge (memory) from which they are based. Dialogue-based
REAding comprehension exaMination (DREAM) (Sun et al.
2019) is a dataset that is aimed at text comprehension, we
adopt the text as our memory and the question as input to
the system. Schema-Guided Dialogue (SGD) (Rastogi et al.
2020) is a dataset containing task-oriented conversations
where a virtual assistant answers queries based on retrieved
data (memory). Wizard of Wikipedia (WoW) (Dinan et al.
2019) contains conversations grounded on knowledge from
Wikipedia (memory).

Results

We compare our method to two simple baselines: (i) regu-
larly feeding the input to the decoder with no inclusion of
memory and (ii) prepending the memory to the regular in-
put of the decoder (similar to the brute force approach we
described earlier). Note how (i) is not an absurd baseline

Zhttps://github.com/alessioGalatolo/Memory-Encoder-LLaMA

| Method | Cross-Entropy Loss |

Memory encoder (ours) 7.73
No inclusion of memory 19.97
Prepending plain memory to input 21.37

Table 1: Summary of results

as some of the queries can be answered without the mem-
ory and just with ‘common knowledge’ e.g. from the WoW
dataset: “Are they [armadillos] native to a Spanish-speaking
part of the world?”.

Preliminary results on our validation set show a better
cross-entropy loss of our method compared to both base-
lines, summarised in Table 1.

Conclusions and Future Work

Our method is able to encode and compress a given memory
and augment the generation of the decoder without the need
for further training, outperforming simple approaches. With
the encoder’s reduced size, we improve over our baselines
by prepending to the input only 16 tokens.

This method shows promising opportunities for future
work. For instance, we plan to extend the pretraining phase
with additional, more diverse datasets. Experimenting with a
different number of encoder layers and dimensions and pos-
sibly fine-tuning the decoder after the encoder’s training.
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